Dal testo libero alla richiesta strutturata:
applicazioni pratiche del protocollo MCP con .NET

Gaetano Paterno
Senior Software Engineer @Relatech
Founder @EtnaDev Community

Grazie ai hostri sponsor!

improcve ® Wisej.NET

ANTHROP\C 0 Model Context Protocol

Model Context Protocol, o MCP, e uno standard aperto che sta diventando
rapidamente il “linguaggio universale” con cui gli LLM parlano con strumenti
esterni.

MCP permette a un modello di:

e scoprire le funzionalita disponibili,
* capire quali parametri servono,

* invocare funzioni tipizzate,

* ricevere risposte standardizzate.

—

USB-C PERLE APPLICATION

Prima ogni sistema inventava il proprio metodo per far usare strumenti al’LLM.

~ Ora abbiamo uno standard unico per:
* definire tool
* descriverli
e scoprire cosa e disponibile
* chiamarliin modo coerente

Questa standardizzazione € potentissima perché:

* elimina protocolli custom

* rende strumenti sviluppati da team diversi compatibili tra loro
 permette al’LLM diragionare sapendo esattamente cosa puo fare
* acceleral’integrazione tra Al e backend

...iLtutto senza costruire infrastrutture proprietarie.

| PRINCIPALI PARTECIPANTI ALLARCHITETTURA MCP

MCP Host: l'applicazione Al che coordina e gestisce uno o piu client MCP.

Client MCP: un componente che mantiene una connessione a un server MCP
e ottiene il contesto da un server MCP affinché 'host MCP possa utilizzarlo.

MCP Server: un programma che fornisce contesto ai client MCP.

MCP Client 1

One-to-one
connection

'

MCP Server 1
(e.g., Sentry)

MCP Host (Al Application)

MCP Client 2

One-to-one
connection

.

MCP Server 2
(e.q., Filesystem)

MCP Client 3

One-to-one
connection

'

MCP Server 3
(e.g., Database)

MCP E COSTITUITO DA DUE STRATI

Data layer

Il data layer implementa un protocollo di scambio
basato su JSON-RPC 2.0 che definisce la struttura
e la semantica del messaggio.

* Lifycycle management: gestisce
l'inizializzazione della connessione, la
negoziazione delle capacita e la terminazione
della connessione tra client e server.

* Server features: consente ai server di fornire
funzionalita di base tra cui strumenti per azioni
di intelligenza artificiale, risorse per dati di
contesto e richieste per modelli di interazione
da e verso il client.

* Client features: consente ai server di chiedere
al client di campionare dall'LLM host, ottenere
input dall'utente e registrare i messaggi sul
client.

* Utility features: supporta funzionalita
aggiuntive come notifiche per aggiornamenti in
tempo reale e monitoraggio dei progressi per
operazioni di lunga durata.

Transport layer

ILtransport layer gestisce i canali di comunicazione
e l'autenticazione tra client e server.

MCP supporta due meccanismi di trasporto:

Stdio transport: utilizza flussi di input/output
standard per la comunicazione diretta dei
processi tra processi locali sulla stessa
macchina, garantendo prestazioni ottimali
senza sovraccarico di rete.

Streamable HTTP trasport: utilizza HTTP POST
per i messaggi client-server con eventi inviati
dal server opzionali per le funzionalita di
streaming. Questo trasporto consente la
comunicazione con server remoti e supporta
metodi di autenticazione HTTP standard, tra cui
token portanti, chiavi API e intestazioni
personalizzate. MCP consiglia di utilizzare
OAuth per ottenere token di autenticazione.

“l SERVER MCP SONO PROGRAMMI CHE ESPONGONO FUNZIONALITA
SPECIFICHE ALLE APPLICAZIONI DI INTELLIGENZA ARTIFICIALE TRAMITE
INTERFACCE DI PROTOCOLLO STANDARDIZZATE.”

¢ Server Console ¢ Server Web (.NET Minimal APl o ASP.NET Core)
Ideale quando: Si usa quando:
* |'applicazione gira lato utente * vogliamo esporre tool a piu client
* itoolinteragiscono con il file system locale contemporaneamente
* sivuole distribuire un agente locale (desktop * desideriamo integrare MCP in un sistema
agent, automazioni, CLI intelligenti) enterprise
* abbiamo un microservizio Al-dedicated
ILtransport usato € solitamente stdio e e vogliamo scalare in cloud

applicazione comunica con U'LLM via pipe.
ILtransport € HTTP/HTTPS.

Il vantaggio enorme é che il codice dei tool non cambia.
Cambia soloilmodo in cui il server comunica coni client MCP.

DEMO: Costruzione del Server MCP in .NET

builder.Services.AddMcpServer()

Registra tutto il codice necessario per:
e discovery

* toolloading

* validazione dei parametri

» gestione del protocollo

WithHttpTransport()

Aggiunge il transport HTTP/HTTPS. Si usa nei server web.

WithConsoleTransport()
Per applicazioni console. Il transport avviene via stdio.

WithToolsFromAssembly()
Esegue il discovery nell’assembly specificato.

app.AddMcp(“/mcp”’)

Il path € opzionale, ma esplicitarlo:
* evita cambiamenti futuri

* rende il servizio piu prevedibile
* facilitaiclient

{

{

Claude

"mcpServers": {
"demo": {

}
}
}

"command": "dotnet’,

"args": ["run --project’,
"C:\\Users\\tanop\\source\\repos\\MCPTest\\Server\\Server.Console.csproj’,
"--no-build"]

"mcpServers": {
"demo": {

}
}
}

"command": "npx’,
"args": ['mcp-remote’,
"http://localhost:5000"]

ANALISI DETTAGLIATA DEI TOOL MCP

©® [McpServerToolType] - Sistema di Discovery ©® [McpServerTool] - Dichiarazione del Tool
Quando una classe € annotata con questo attributo, Ognitool esposto al modello € un metodo marcato
stiamo dicendo al runtime: con questo attributo.
“In questa classe ci sono uno o piu tool MCP. Perché i tool vanno raggruppati e non
Scoprili automaticamente e rendili disponibili al moltiplicati?
client.”
Gli LLM ragionano in termini probabilistici,
E Uentry point del discovery. piu tool esponiamo, piu aumentiamo:
* laconfusione
Perché e utile? * la sovrapposizione semantica
* Riduce la configurazione manuale * ilrischioche U'LLM scelga iltool sbagliato
* Permette una struttura modulare
* Facilita la manutenzione (aggiungi un metodo > Un buon server MCP ha:
diventa un tool) * tool generali e utili

e ben descritti
* nonridondanti

ANALISI DETTAGLIATA DEI TOOL MCP

< Discovery: Automatico vs Manuale

Hai due approcci:

« Automatico

Con ‘WithToolsFromAssembly’vengono caricati

tutti i tool trovati.

Pro: rapida evoluzione, ottimo per dev e prototipi
Contro: rischio di esporre tool non desiderati

«” Manuale
Registri tu solo cio che serve.

Pro: maggiore controllo
Contro: piu manutenzione

©® L’importanza delle Description

La Description € uno dei punti pit importanti
dell’intero talk.

Gli LLM fanno tool selection basandosi su cio che
leggono nella descrizione.

Una buona Description risponde a:
Cosafail tool

Quando va usato

Con quali parametri

Quali sono i limiti

Che tipo di risultato produce

aORhobdbS

Questo aiuta enormemente il modello ad agire correttamente.

NO Swagger ? -> §63 MCP Inspector

npx @modelcontextprotocol/inspector

&, Test e Debug: niente Swagger Per ispezionare il server serve MCP Inspector.
Gli endpoint REST hanno Swagger. Con MCP Inspector possiamo:

* vedereitool caricati
MCP non ha endpoint per ogni tool: * visualizzare la documentazione generata
ha un solo endpoint, e al suo interno passiamo: * eseguiretestintempo reale
 |D deltool * vedere i payload di protocollo
e parametri tipizzati * simulare il comportamento del client LLM

« schema MCP]
E la controparte “Swagger” del mondo MCP.

1, CORS per Client Web
Se il server MCP & esposto via HTTP e acceduto da un client in browser:
CORS deve essere abilitato, altrimenti il browser blocca le richieste.

DEMO: Costruzione del Client MCP in .NET

Il client € sorprendentemente semplice:
1. Creazione del transport

var transport = new HttpClientTransport("<server-url>"); (: l I
2. Creazione del client MCP au e

var client = await McpClient.CreateAsync(transport);

Il client esegue automaticamente:
OpenAl
e caricamento schema tools

* validazione

3. Listing tool
var tools = await client.ListToolsAsync(),

(O
4. Invocazione tool
(Tipicamente generando un dictionary con i parametri o

usando DTO tipizzati)

TypeScript

3

Kotlin

C#

PHP

SDK DISPONIBILI

@

Python

Swift

Ruby

{H =N

Java

Rust

https://modelcontextprotocol.io/docs/getting-started/intro

CONCLUSIONE E VISIONE

MCP e uno dei mattoni fondamentali per costruire applicazioni Al veramente integrate.

Grazie alla sua natura:
e aperta

* standardizzata

* tipizzata

* interoperabile

...possiamo oggi creare con .NET applicazioni intelligenti molto piu solide.
PRESENTE E FUTURO?

Abbiamo e avremo:

 marketplace sempre piu ricchi di tool MCP interoperabili
* applicazioni che composte da strumenti di team diversi
* agent autonomiin grado di negoziare funzionalita

* ecosistemi Al modulari

Grazie!

| video saranno scaricabili presto sul sito previa login https://dotnetconference.it

facebook.com
linkedin.com }/tanopaterno |

‘ Qﬁﬂ‘ github.com

www.gaetanopaterno.it
d N info@gaetanopaterno.it

EEEEEEEEEEEEEEEEEE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

