
XMAS DEV 2025

Session Banner - “Dalla letterina a Babbo Natale all’ordine perfetto: magia (MCP) sotto l’albero”

Platinum Sponsor

Gold Sponsor Technical Sponsor

Event Sponsors

Community

Model Context Protocol, o MCP, è uno standard aperto che sta diventando
rapidamente il “linguaggio universale” con cui gli LLM parlano con strumenti
esterni.

MCP permette a un modello di:

• scoprire le funzionalità disponibili,
• capire quali parametri servono,
• invocare funzioni tipizzate,
• ricevere risposte standardizzate.

PER LE APPLICATION

 Prima ogni sistema inventava il proprio metodo per far usare strumenti all’LLM.

 Ora abbiamo uno standard unico per:
• definire tool
• descriverli
• scoprire cosa è disponibile
• chiamarli in modo coerente

Questa standardizzazione è potentissima perché:
• elimina protocolli custom
• rende strumenti sviluppati da team diversi compatibili tra loro
• permette all’LLM di ragionare sapendo esattamente cosa può fare
• accelera l’integrazione tra AI e backend

…il tutto senza costruire infrastrutture proprietarie.

MCP Host: l'applicazione AI che coordina e gestisce uno o più client MCP.

MCP Client: un componente che mantiene una connessione a un server MCP e
ottiene il contesto da un server MCP affinché l'host MCP possa utilizzarlo.

MCP Server: un programma che fornisce contesto ai client MCP.

I PRINCIPALI PARTECIPANTI ALL'ARCHITETTURA MCP

MCP È COSTITUITO DA DUE STRATI

Data layer

Il data layer implementa un protocollo di scambio
basato su JSON-RPC 2.0 che definisce la struttura e la
semantica del messaggio.

• Lifycycle management: gestisce l'inizializzazione
della connessione, la negoziazione delle capacità e
la terminazione della connessione tra client e
server.

• Server features: consente ai server di fornire
funzionalità di base tra cui strumenti per azioni di
intelligenza artificiale, risorse per dati di contesto
e richieste per modelli di interazione da e verso il
client.

• Client features: consente ai server di chiedere al
client di campionare dall'LLM host, ottenere input
dall'utente e registrare i messaggi sul client.

• Utility features: supporta funzionalità aggiuntive
come notifiche per aggiornamenti in tempo reale
e monitoraggio dei progressi per operazioni di
lunga durata.

Transport layer

Il transport layer gestisce i canali di comunicazione e
l'autenticazione tra client e server.

MCP supporta due meccanismi di trasporto:

• Stdio transport: utilizza flussi di input/output
standard per la comunicazione diretta dei processi
tra processi locali sulla stessa macchina,
garantendo prestazioni ottimali senza sovraccarico
di rete.

• Streamable HTTP trasport: utilizza HTTP POST per
i messaggi client-server con eventi inviati dal
server opzionali per le funzionalità di streaming.
Questo trasporto consente la comunicazione con
server remoti e supporta metodi di autenticazione
HTTP standard, tra cui token portanti, chiavi API e
intestazioni personalizzate. MCP consiglia di
utilizzare OAuth per ottenere token di
autenticazione.

“I SERVER MCP SONO PROGRAMMI CHE ESPONGONO
FUNZIONALITÀ SPECIFICHE ALLE APPLICAZIONI AI

TRAMITE INTERFACCE DI PROTOCOLLO STANDARDIZZATE.”

 Server Console

Ideale quando:
• l’applicazione gira lato utente
• i tool interagiscono con il file system

locale
• si vuole distribuire un agente locale

(desktop agent, automazioni, CLI
intelligenti)

Il transport usato è solitamente stdio e
l’applicazione comunica con l’LLM via pipe.

 Server Web
 (.NET Minimal API o ASP.NET Core)

Si usa quando:
• vogliamo esporre tool a più client

contemporaneamente
• desideriamo integrare MCP in un sistema

enterprise
• abbiamo un microservizio AI-dedicated
• vogliamo scalare in cloud

Il transport è HTTP/HTTPS.

Il vantaggio enorme è che il codice dei tool non cambia.
Cambia solo il modo in cui il server comunica con i client MCP.

DEMO: Costruzione del Server MCP in .NET

builder.Services.AddMcpServer()

Registra tutto il codice necessario per:
• discovery
• tool loading
• validazione dei parametri
• gestione del protocollo

WithHttpTransport()
Aggiunge il transport HTTP/HTTPS. Si usa nei
server web.

WithConsoleTransport()
Per applicazioni console. Il transport avviene
via stdio.

WithToolsFromAssembly()
Esegue il discovery nell’assembly specificato.

app.AddMcp(“/mcp”)
Il path è opzionale, ma esplicitarlo:
• evita cambiamenti futuri
• rende il servizio più prevedibile
• facilita i client

{
"mcpServers": {

"demo": {
"command": "dotnet",
"args": ["run --project",

"C:\\Users\\tanop\\source\\repos\\MCPTest\\Server\\Server.Console.csproj",
"--no-build"]

}
}

}

{
"mcpServers": {

"demo": {
"command": "npx",
"args": ["mcp-remote",

"http://localhost:5000"]
}

}
}

ANALISI DETTAGLIATA DEI TOOL MCP

 [McpServerToolType] – Sistema di Discovery

Quando una classe è annotata con questo
attributo, stiamo dicendo al runtime:

“In questa classe ci sono uno o più tool MCP.
Scoprili automaticamente e rendili disponibili al
client.”

È l’entry point del discovery.

Perché è utile?
• Riduce la configurazione manuale
• Permette una struttura modulare
• Facilita la manutenzione (aggiungi un metodo

→ diventa un tool)

 [McpServerTool] – Dichiarazione del Tool

Ogni tool esposto al modello è un metodo
marcato con questo attributo.

Perché i tool vanno raggruppati e non
moltiplicati?

Gli LLM ragionano in termini probabilistici,
più tool esponiamo, più aumentiamo:
• la confusione
• la sovrapposizione semantica
• il rischio che l’LLM scelga il tool sbagliato

Un buon server MCP ha:
• tool generali e utili
• ben descritti
• non ridondanti

ANALISI DETTAGLIATA DEI TOOL MCP

 Discovery: Automatico vs Manuale

Hai due approcci:

 Automatico
Con ‘WithToolsFromAssembly’ vengono caricati
tutti i tool trovati.

Pro: rapida evoluzione, ottimo per dev e
prototipi
Contro: rischio di esporre tool non desiderati

 Manuale
Con ‘WithTools<T>’ registri tu solo ciò che serve.

Pro: maggiore controllo
Contro: più manutenzione

 L’importanza delle Description

La Description è uno dei punti più importanti
dell’intero talk.

Gli LLM fanno tool selection basandosi su ciò
che leggono nella descrizione.

Una buona Description risponde a:
1. Cosa fa il tool
2. Quando va usato
3. Con quali parametri
4. Quali sono i limiti
5. Che tipo di risultato produce

Questo aiuta enormemente il modello ad agire correttamente.

NO ? ->

Test e Debug: niente Swagger

Gli endpoint REST hanno Swagger.

MCP non ha endpoint per ogni tool:
ha un solo endpoint, e al suo interno
passiamo:
• ID del tool
• parametri tipizzati
• schema MCP

Per ispezionare il server serve MCP Inspector.

Con MCP Inspector possiamo:
• vedere i tool caricati
• visualizzare la documentazione generata
• eseguire test in tempo reale
• vedere i payload di protocollo
• simulare il comportamento del client LLM

È la controparte “Swagger” del mondo MCP.

 CORS per Client Web
Se il server MCP è esposto via HTTP e acceduto da un client in browser:

CORS deve essere abilitato, altrimenti il browser blocca le richieste.

npx @modelcontextprotocol/inspector

DEMO: Costruzione del Client MCP in .NET

Il client è sorprendentemente semplice:

1. Creazione del transport

var transport = new HttpClientTransport("<server-url>");

2. Creazione del client MCP

var client = await McpClient.CreateAsync(transport);

Il client esegue automaticamente:
• handshake
• caricamento schema tools
• validazione

3. Listing tool

var tools = await client.ListToolsAsync();

4. Invocazione tool
(Tipicamente generando un dictionary con i parametri o usando
DTO tipizzati)

SDK DISPONIBILI

https://modelcontextprotocol.io/docs/getting-started/intro

CONCLUSIONE E VISIONE

MCP è uno dei mattoni fondamentali per costruire applicazioni AI veramente integrate.

Grazie alla sua natura:
• aperta
• standardizzata
• tipizzata
• interoperabile

…possiamo oggi creare con .NET applicazioni intelligenti molto più solide.

PRESENTE E FUTURO?

Abbiamo e avremo:
• marketplace sempre più ricchi di tool MCP interoperabili
• applicazioni che composte da strumenti di team diversi
• agent autonomi in grado di negoziare funzionalità
• ecosistemi AI modulari

Please Vote for This Session
Vote online at:

https://vote.dotnetdev.it/vote/xqt335vh/1040445

Vote for Session - “Dalla letterina a Babbo Natale all’ordine perfetto: magia (MCP) sotto l’albero”

facebook.com
linkedin.com /tanopaterno
github.com

www.gaetanopaterno.it
info@gaetanopaterno.it

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Please Vote for This Session

